This document describes the input and output protocols provided by the libavformat library.
The libavformat library provides some generic global options, which can be set on all the protocols. In addition each protocol may support so-called private options, which are specific for that component.
Options may be set by specifying -option value in the
FFmpeg tools, or by setting the value explicitly in the
AVFormatContext
options or using the ‘libavutil/opt.h’ API
for programmatic use.
The list of supported options follows:
Set a ","-separated list of allowed protocols. "ALL" matches all protocols. Protocols prefixed by "-" are disabled. All protocols are allowed by default but protocols used by an another protocol (nested protocols) are restricted to a per protocol subset.
Protocols are configured elements in FFmpeg that enable access to resources that require specific protocols.
When you configure your FFmpeg build, all the supported protocols are enabled by default. You can list all available ones using the configure option "–list-protocols".
You can disable all the protocols using the configure option "–disable-protocols", and selectively enable a protocol using the option "–enable-protocol=PROTOCOL", or you can disable a particular protocol using the option "–disable-protocol=PROTOCOL".
The option "-protocols" of the ff* tools will display the list of supported protocols.
All protocols accept the following options:
Maximum time to wait for (network) read/write operations to complete, in microseconds.
A description of the currently available protocols follows.
Advanced Message Queueing Protocol (AMQP) version 0-9-1 is a broker based publish-subscribe communication protocol.
FFmpeg must be compiled with –enable-librabbitmq to support AMQP. A separate AMQP broker must also be run. An example open-source AMQP broker is RabbitMQ.
After starting the broker, an FFmpeg client may stream data to the broker using the command:
ffmpeg -re -i input -f mpegts amqp://[[user]:[password]@]hostname[:port]
Where hostname and port (default is 5672) is the address of the broker. The client may also set a user/password for authentication. The default for both fields is "guest".
Muliple subscribers may stream from the broker using the command:
ffplay amqp://[[user]:[password]@]hostname[:port]
In RabbitMQ all data published to the broker flows through a specific exchange, and each subscribing client has an assigned queue/buffer. When a packet arrives at an exchange, it may be copied to a client’s queue depending on the exchange and routing_key fields.
The following options are supported:
Sets the exchange to use on the broker. RabbitMQ has several predefined exchanges: "amq.direct" is the default exchange, where the publisher and subscriber must have a matching routing_key; "amq.fanout" is the same as a broadcast operation (i.e. the data is forwarded to all queues on the fanout exchange independent of the routing_key); and "amq.topic" is similar to "amq.direct", but allows for more complex pattern matching (refer to the RabbitMQ documentation).
Sets the routing key. The default value is "amqp". The routing key is used on the "amq.direct" and "amq.topic" exchanges to decide whether packets are written to the queue of a subscriber.
Maximum size of each packet sent/received to the broker. Default is 131072. Minimum is 4096 and max is any large value (representable by an int). When receiving packets, this sets an internal buffer size in FFmpeg. It should be equal to or greater than the size of the published packets to the broker. Otherwise the received message may be truncated causing decoding errors.
The timeout in seconds during the initial connection to the broker. The default value is rw_timeout, or 5 seconds if rw_timeout is not set.
Sets the delivery mode of each message sent to broker. The following values are accepted:
Delivery mode set to "persistent" (2). This is the default value. Messages may be written to the broker’s disk depending on its setup.
Delivery mode set to "non-persistent" (1). Messages will stay in broker’s memory unless the broker is under memory pressure.
Asynchronous data filling wrapper for input stream.
Fill data in a background thread, to decouple I/O operation from demux thread.
async:URL async:http://host/resource async:cache:http://host/resource
Read BluRay playlist.
The accepted options are:
BluRay angle
Start chapter (1...N)
Playlist to read (BDMV/PLAYLIST/?????.mpls)
Examples:
Read longest playlist from BluRay mounted to /mnt/bluray:
bluray:/mnt/bluray
Read angle 2 of playlist 4 from BluRay mounted to /mnt/bluray, start from chapter 2:
-playlist 4 -angle 2 -chapter 2 bluray:/mnt/bluray
Caching wrapper for input stream.
Cache the input stream to temporary file. It brings seeking capability to live streams.
cache:URL
Physical concatenation protocol.
Read and seek from many resources in sequence as if they were a unique resource.
A URL accepted by this protocol has the syntax:
concat:URL1|URL2|...|URLN
where URL1, URL2, ..., URLN are the urls of the resource to be concatenated, each one possibly specifying a distinct protocol.
For example to read a sequence of files ‘split1.mpeg’,
‘split2.mpeg’, ‘split3.mpeg’ with ffplay
use the
command:
ffplay concat:split1.mpeg\|split2.mpeg\|split3.mpeg
Note that you may need to escape the character "|" which is special for many shells.
AES-encrypted stream reading protocol.
The accepted options are:
Set the AES decryption key binary block from given hexadecimal representation.
Set the AES decryption initialization vector binary block from given hexadecimal representation.
Accepted URL formats:
crypto:URL crypto+URL
Data in-line in the URI. See http://en.wikipedia.org/wiki/Data_URI_scheme.
For example, to convert a GIF file given inline with ffmpeg
:
ffmpeg -i "" smiley.png
File access protocol.
Read from or write to a file.
A file URL can have the form:
file:filename
where filename is the path of the file to read.
An URL that does not have a protocol prefix will be assumed to be a file URL. Depending on the build, an URL that looks like a Windows path with the drive letter at the beginning will also be assumed to be a file URL (usually not the case in builds for unix-like systems).
For example to read from a file ‘input.mpeg’ with ffmpeg
use the command:
ffmpeg -i file:input.mpeg output.mpeg
This protocol accepts the following options:
Truncate existing files on write, if set to 1. A value of 0 prevents truncating. Default value is 1.
Set I/O operation maximum block size, in bytes. Default value is
INT_MAX
, which results in not limiting the requested block size.
Setting this value reasonably low improves user termination request reaction
time, which is valuable for files on slow medium.
If set to 1, the protocol will retry reading at the end of the file, allowing reading files that still are being written. In order for this to terminate, you either need to use the rw_timeout option, or use the interrupt callback (for API users).
Controls if seekability is advertised on the file. 0 means non-seekable, -1 means auto (seekable for normal files, non-seekable for named pipes).
Many demuxers handle seekable and non-seekable resources differently, overriding this might speed up opening certain files at the cost of losing some features (e.g. accurate seeking).
FTP (File Transfer Protocol).
Read from or write to remote resources using FTP protocol.
Following syntax is required.
ftp://[user[:password]@]server[:port]/path/to/remote/resource.mpeg
This protocol accepts the following options.
Set timeout in microseconds of socket I/O operations used by the underlying low level operation. By default it is set to -1, which means that the timeout is not specified.
Set a user to be used for authenticating to the FTP server. This is overridden by the user in the FTP URL.
Set a password to be used for authenticating to the FTP server. This is overridden by the password in the FTP URL, or by ‘ftp-anonymous-password’ if no user is set.
Password used when login as anonymous user. Typically an e-mail address should be used.
Control seekability of connection during encoding. If set to 1 the resource is supposed to be seekable, if set to 0 it is assumed not to be seekable. Default value is 0.
NOTE: Protocol can be used as output, but it is recommended to not do it, unless special care is taken (tests, customized server configuration etc.). Different FTP servers behave in different way during seek operation. ff* tools may produce incomplete content due to server limitations.
Gopher protocol.
Read Apple HTTP Live Streaming compliant segmented stream as a uniform one. The M3U8 playlists describing the segments can be remote HTTP resources or local files, accessed using the standard file protocol. The nested protocol is declared by specifying "+proto" after the hls URI scheme name, where proto is either "file" or "http".
hls+http://host/path/to/remote/resource.m3u8 hls+file://path/to/local/resource.m3u8
Using this protocol is discouraged - the hls demuxer should work just as well (if not, please report the issues) and is more complete. To use the hls demuxer instead, simply use the direct URLs to the m3u8 files.
HTTP (Hyper Text Transfer Protocol).
This protocol accepts the following options:
Control seekability of connection. If set to 1 the resource is supposed to be seekable, if set to 0 it is assumed not to be seekable, if set to -1 it will try to autodetect if it is seekable. Default value is -1.
If set to 1 use chunked Transfer-Encoding for posts, default is 1.
Set a specific content type for the POST messages or for listen mode.
set HTTP proxy to tunnel through e.g. http://example.com:1234
Set custom HTTP headers, can override built in default headers. The value must be a string encoding the headers.
Use persistent connections if set to 1, default is 0.
Set custom HTTP post data.
Set the Referer header. Include ’Referer: URL’ header in HTTP request.
Override the User-Agent header. If not specified the protocol will use a string describing the libavformat build. ("Lavf/<version>")
This is a deprecated option, you can use user_agent instead it.
If set then eof is treated like an error and causes reconnection, this is useful for live / endless streams.
If set then even streamed/non seekable streams will be reconnected on errors.
Sets the maximum delay in seconds after which to give up reconnecting
Export the MIME type.
Exports the HTTP response version number. Usually "1.0" or "1.1".
If set to 1 request ICY (SHOUTcast) metadata from the server. If the server supports this, the metadata has to be retrieved by the application by reading the ‘icy_metadata_headers’ and ‘icy_metadata_packet’ options. The default is 1.
If the server supports ICY metadata, this contains the ICY-specific HTTP reply headers, separated by newline characters.
If the server supports ICY metadata, and ‘icy’ was set to 1, this contains the last non-empty metadata packet sent by the server. It should be polled in regular intervals by applications interested in mid-stream metadata updates.
Set the cookies to be sent in future requests. The format of each cookie is the same as the value of a Set-Cookie HTTP response field. Multiple cookies can be delimited by a newline character.
Set initial byte offset.
Try to limit the request to bytes preceding this offset.
When used as a client option it sets the HTTP method for the request.
When used as a server option it sets the HTTP method that is going to be expected from the client(s). If the expected and the received HTTP method do not match the client will be given a Bad Request response. When unset the HTTP method is not checked for now. This will be replaced by autodetection in the future.
If set to 1 enables experimental HTTP server. This can be used to send data when used as an output option, or read data from a client with HTTP POST when used as an input option. If set to 2 enables experimental multi-client HTTP server. This is not yet implemented in ffmpeg.c and thus must not be used as a command line option.
# Server side (sending): ffmpeg -i somefile.ogg -c copy -listen 1 -f ogg http://server:port # Client side (receiving): ffmpeg -i http://server:port -c copy somefile.ogg # Client can also be done with wget: wget http://server:port -O somefile.ogg # Server side (receiving): ffmpeg -listen 1 -i http://server:port -c copy somefile.ogg # Client side (sending): ffmpeg -i somefile.ogg -chunked_post 0 -c copy -f ogg http://server:port # Client can also be done with wget: wget --post-file=somefile.ogg http://server:port
Send an Expect: 100-continue header for POST. If set to 1 it will send, if set to 0 it won’t, if set to -1 it will try to send if it is applicable. Default value is -1.
Set HTTP authentication type. No option for Digest, since this method requires getting nonce parameters from the server first and can’t be used straight away like Basic.
Choose the HTTP authentication type automatically. This is the default.
Choose the HTTP basic authentication.
Basic authentication sends a Base64-encoded string that contains a user name and password for the client. Base64 is not a form of encryption and should be considered the same as sending the user name and password in clear text (Base64 is a reversible encoding). If a resource needs to be protected, strongly consider using an authentication scheme other than basic authentication. HTTPS/TLS should be used with basic authentication. Without these additional security enhancements, basic authentication should not be used to protect sensitive or valuable information.
Some HTTP requests will be denied unless cookie values are passed in with the request. The ‘cookies’ option allows these cookies to be specified. At the very least, each cookie must specify a value along with a path and domain. HTTP requests that match both the domain and path will automatically include the cookie value in the HTTP Cookie header field. Multiple cookies can be delimited by a newline.
The required syntax to play a stream specifying a cookie is:
ffplay -cookies "nlqptid=nltid=tsn; path=/; domain=somedomain.com;" http://somedomain.com/somestream.m3u8
Icecast protocol (stream to Icecast servers)
This protocol accepts the following options:
Set the stream genre.
Set the stream name.
Set the stream description.
Set the stream website URL.
Set if the stream should be public. The default is 0 (not public).
Override the User-Agent header. If not specified a string of the form "Lavf/<version>" will be used.
Set the Icecast mountpoint password.
Set the stream content type. This must be set if it is different from audio/mpeg.
This enables support for Icecast versions < 2.4.0, that do not support the HTTP PUT method but the SOURCE method.
Establish a TLS (HTTPS) connection to Icecast.
icecast://[username[:password]@]server:port/mountpoint
MMS (Microsoft Media Server) protocol over TCP.
MMS (Microsoft Media Server) protocol over HTTP.
The required syntax is:
mmsh://server[:port][/app][/playpath]
MD5 output protocol.
Computes the MD5 hash of the data to be written, and on close writes this to the designated output or stdout if none is specified. It can be used to test muxers without writing an actual file.
Some examples follow.
# Write the MD5 hash of the encoded AVI file to the file output.avi.md5. ffmpeg -i input.flv -f avi -y md5:output.avi.md5 # Write the MD5 hash of the encoded AVI file to stdout. ffmpeg -i input.flv -f avi -y md5:
Note that some formats (typically MOV) require the output protocol to be seekable, so they will fail with the MD5 output protocol.
UNIX pipe access protocol.
Read and write from UNIX pipes.
The accepted syntax is:
pipe:[number]
number is the number corresponding to the file descriptor of the pipe (e.g. 0 for stdin, 1 for stdout, 2 for stderr). If number is not specified, by default the stdout file descriptor will be used for writing, stdin for reading.
For example to read from stdin with ffmpeg
:
cat test.wav | ffmpeg -i pipe:0 # ...this is the same as... cat test.wav | ffmpeg -i pipe:
For writing to stdout with ffmpeg
:
ffmpeg -i test.wav -f avi pipe:1 | cat > test.avi # ...this is the same as... ffmpeg -i test.wav -f avi pipe: | cat > test.avi
This protocol accepts the following options:
Set I/O operation maximum block size, in bytes. Default value is
INT_MAX
, which results in not limiting the requested block size.
Setting this value reasonably low improves user termination request reaction
time, which is valuable if data transmission is slow.
Note that some formats (typically MOV), require the output protocol to be seekable, so they will fail with the pipe output protocol.
Pro-MPEG Code of Practice #3 Release 2 FEC protocol.
The Pro-MPEG CoP#3 FEC is a 2D parity-check forward error correction mechanism for MPEG-2 Transport Streams sent over RTP.
This protocol must be used in conjunction with the rtp_mpegts
muxer and
the rtp
protocol.
The required syntax is:
-f rtp_mpegts -fec prompeg=option=val... rtp://hostname:port
The destination UDP ports are port + 2
for the column FEC stream
and port + 4
for the row FEC stream.
This protocol accepts the following options:
The number of columns (4-20, LxD <= 100)
The number of rows (4-20, LxD <= 100)
Example usage:
-f rtp_mpegts -fec prompeg=l=8:d=4 rtp://hostname:port
Real-Time Messaging Protocol.
The Real-Time Messaging Protocol (RTMP) is used for streaming multimedia content across a TCP/IP network.
The required syntax is:
rtmp://[username:password@]server[:port][/app][/instance][/playpath]
The accepted parameters are:
An optional username (mostly for publishing).
An optional password (mostly for publishing).
The address of the RTMP server.
The number of the TCP port to use (by default is 1935).
It is the name of the application to access. It usually corresponds to
the path where the application is installed on the RTMP server
(e.g. ‘/ondemand/’, ‘/flash/live/’, etc.). You can override
the value parsed from the URI through the rtmp_app
option, too.
It is the path or name of the resource to play with reference to the
application specified in app, may be prefixed by "mp4:". You
can override the value parsed from the URI through the rtmp_playpath
option, too.
Act as a server, listening for an incoming connection.
Maximum time to wait for the incoming connection. Implies listen.
Additionally, the following parameters can be set via command line options
(or in code via AVOption
s):
Name of application to connect on the RTMP server. This option overrides the parameter specified in the URI.
Set the client buffer time in milliseconds. The default is 3000.
Extra arbitrary AMF connection parameters, parsed from a string,
e.g. like B:1 S:authMe O:1 NN:code:1.23 NS:flag:ok O:0
.
Each value is prefixed by a single character denoting the type,
B for Boolean, N for number, S for string, O for object, or Z for null,
followed by a colon. For Booleans the data must be either 0 or 1 for
FALSE or TRUE, respectively. Likewise for Objects the data must be 0 or
1 to end or begin an object, respectively. Data items in subobjects may
be named, by prefixing the type with ’N’ and specifying the name before
the value (i.e. NB:myFlag:1
). This option may be used multiple
times to construct arbitrary AMF sequences.
Version of the Flash plugin used to run the SWF player. The default is LNX 9,0,124,2. (When publishing, the default is FMLE/3.0 (compatible; <libavformat version>).)
Number of packets flushed in the same request (RTMPT only). The default is 10.
Specify that the media is a live stream. No resuming or seeking in
live streams is possible. The default value is any
, which means the
subscriber first tries to play the live stream specified in the
playpath. If a live stream of that name is not found, it plays the
recorded stream. The other possible values are live
and
recorded
.
URL of the web page in which the media was embedded. By default no value will be sent.
Stream identifier to play or to publish. This option overrides the parameter specified in the URI.
Name of live stream to subscribe to. By default no value will be sent. It is only sent if the option is specified or if rtmp_live is set to live.
SHA256 hash of the decompressed SWF file (32 bytes).
Size of the decompressed SWF file, required for SWFVerification.
URL of the SWF player for the media. By default no value will be sent.
URL to player swf file, compute hash/size automatically.
URL of the target stream. Defaults to proto://host[:port]/app.
For example to read with ffplay
a multimedia resource named
"sample" from the application "vod" from an RTMP server "myserver":
ffplay rtmp://myserver/vod/sample
To publish to a password protected server, passing the playpath and app names separately:
ffmpeg -re -i <input> -f flv -rtmp_playpath some/long/path -rtmp_app long/app/name rtmp://username:password@myserver/
Encrypted Real-Time Messaging Protocol.
The Encrypted Real-Time Messaging Protocol (RTMPE) is used for streaming multimedia content within standard cryptographic primitives, consisting of Diffie-Hellman key exchange and HMACSHA256, generating a pair of RC4 keys.
Real-Time Messaging Protocol over a secure SSL connection.
The Real-Time Messaging Protocol (RTMPS) is used for streaming multimedia content across an encrypted connection.
Real-Time Messaging Protocol tunneled through HTTP.
The Real-Time Messaging Protocol tunneled through HTTP (RTMPT) is used for streaming multimedia content within HTTP requests to traverse firewalls.
Encrypted Real-Time Messaging Protocol tunneled through HTTP.
The Encrypted Real-Time Messaging Protocol tunneled through HTTP (RTMPTE) is used for streaming multimedia content within HTTP requests to traverse firewalls.
Real-Time Messaging Protocol tunneled through HTTPS.
The Real-Time Messaging Protocol tunneled through HTTPS (RTMPTS) is used for streaming multimedia content within HTTPS requests to traverse firewalls.
libsmbclient permits one to manipulate CIFS/SMB network resources.
Following syntax is required.
smb://[[domain:]user[:password@]]server[/share[/path[/file]]]
This protocol accepts the following options.
Set timeout in milliseconds of socket I/O operations used by the underlying low level operation. By default it is set to -1, which means that the timeout is not specified.
Truncate existing files on write, if set to 1. A value of 0 prevents truncating. Default value is 1.
Set the workgroup used for making connections. By default workgroup is not specified.
For more information see: http://www.samba.org/.
Secure File Transfer Protocol via libssh
Read from or write to remote resources using SFTP protocol.
Following syntax is required.
sftp://[user[:password]@]server[:port]/path/to/remote/resource.mpeg
This protocol accepts the following options.
Set timeout of socket I/O operations used by the underlying low level operation. By default it is set to -1, which means that the timeout is not specified.
Truncate existing files on write, if set to 1. A value of 0 prevents truncating. Default value is 1.
Specify the path of the file containing private key to use during authorization. By default libssh searches for keys in the ‘~/.ssh/’ directory.
Example: Play a file stored on remote server.
ffplay sftp://user:password@server_address:22/home/user/resource.mpeg
Real-Time Messaging Protocol and its variants supported through librtmp.
Requires the presence of the librtmp headers and library during configuration. You need to explicitly configure the build with "–enable-librtmp". If enabled this will replace the native RTMP protocol.
This protocol provides most client functions and a few server functions needed to support RTMP, RTMP tunneled in HTTP (RTMPT), encrypted RTMP (RTMPE), RTMP over SSL/TLS (RTMPS) and tunneled variants of these encrypted types (RTMPTE, RTMPTS).
The required syntax is:
rtmp_proto://server[:port][/app][/playpath] options
where rtmp_proto is one of the strings "rtmp", "rtmpt", "rtmpe", "rtmps", "rtmpte", "rtmpts" corresponding to each RTMP variant, and server, port, app and playpath have the same meaning as specified for the RTMP native protocol. options contains a list of space-separated options of the form key=val.
See the librtmp manual page (man 3 librtmp) for more information.
For example, to stream a file in real-time to an RTMP server using
ffmpeg
:
ffmpeg -re -i myfile -f flv rtmp://myserver/live/mystream
To play the same stream using ffplay
:
ffplay "rtmp://myserver/live/mystream live=1"
Real-time Transport Protocol.
The required syntax for an RTP URL is: rtp://hostname[:port][?option=val...]
port specifies the RTP port to use.
The following URL options are supported:
Set the TTL (Time-To-Live) value (for multicast only).
Set the remote RTCP port to n.
Set the local RTP port to n.
Set the local RTCP port to n.
Set max packet size (in bytes) to n.
Do a connect()
on the UDP socket (if set to 1) or not (if set
to 0).
List allowed source IP addresses.
List disallowed (blocked) source IP addresses.
Send packets to the source address of the latest received packet (if set to 1) or to a default remote address (if set to 0).
Set the local RTP port to n.
This is a deprecated option. Instead, ‘localrtpport’ should be used.
Important notes:
Real-Time Streaming Protocol.
RTSP is not technically a protocol handler in libavformat, it is a demuxer and muxer. The demuxer supports both normal RTSP (with data transferred over RTP; this is used by e.g. Apple and Microsoft) and Real-RTSP (with data transferred over RDT).
The muxer can be used to send a stream using RTSP ANNOUNCE to a server supporting it (currently Darwin Streaming Server and Mischa Spiegelmock’s RTSP server).
The required syntax for a RTSP url is:
rtsp://hostname[:port]/path
Options can be set on the ffmpeg
/ffplay
command
line, or set in code via AVOption
s or in
avformat_open_input
.
The following options are supported.
Do not start playing the stream immediately if set to 1. Default value is 0.
Set RTSP transport protocols.
It accepts the following values:
Use UDP as lower transport protocol.
Use TCP (interleaving within the RTSP control channel) as lower transport protocol.
Use UDP multicast as lower transport protocol.
Use HTTP tunneling as lower transport protocol, which is useful for passing proxies.
Multiple lower transport protocols may be specified, in that case they are tried one at a time (if the setup of one fails, the next one is tried). For the muxer, only the ‘tcp’ and ‘udp’ options are supported.
Set RTSP flags.
The following values are accepted:
Accept packets only from negotiated peer address and port.
Act as a server, listening for an incoming connection.
Try TCP for RTP transport first, if TCP is available as RTSP RTP transport.
Default value is ‘none’.
Set media types to accept from the server.
The following flags are accepted:
By default it accepts all media types.
Set minimum local UDP port. Default value is 5000.
Set maximum local UDP port. Default value is 65000.
Set maximum timeout (in seconds) to wait for incoming connections.
A value of -1 means infinite (default). This option implies the ‘rtsp_flags’ set to ‘listen’.
Set number of packets to buffer for handling of reordered packets.
Set socket TCP I/O timeout in microseconds.
Override User-Agent header. If not specified, it defaults to the libavformat identifier string.
When receiving data over UDP, the demuxer tries to reorder received packets
(since they may arrive out of order, or packets may get lost totally). This
can be disabled by setting the maximum demuxing delay to zero (via
the max_delay
field of AVFormatContext).
When watching multi-bitrate Real-RTSP streams with ffplay
, the
streams to display can be chosen with -vst
n and
-ast
n for video and audio respectively, and can be switched
on the fly by pressing v
and a
.
The following examples all make use of the ffplay
and
ffmpeg
tools.
ffplay -max_delay 500000 -rtsp_transport udp rtsp://server/video.mp4
ffplay -rtsp_transport http rtsp://server/video.mp4
ffmpeg -re -i input -f rtsp -muxdelay 0.1 rtsp://server/live.sdp
ffmpeg -rtsp_flags listen -i rtsp://ownaddress/live.sdp output
Session Announcement Protocol (RFC 2974). This is not technically a protocol handler in libavformat, it is a muxer and demuxer. It is used for signalling of RTP streams, by announcing the SDP for the streams regularly on a separate port.
The syntax for a SAP url given to the muxer is:
sap://destination[:port][?options]
The RTP packets are sent to destination on port port,
or to port 5004 if no port is specified.
options is a &
-separated list. The following options
are supported:
Specify the destination IP address for sending the announcements to. If omitted, the announcements are sent to the commonly used SAP announcement multicast address 224.2.127.254 (sap.mcast.net), or ff0e::2:7ffe if destination is an IPv6 address.
Specify the port to send the announcements on, defaults to 9875 if not specified.
Specify the time to live value for the announcements and RTP packets, defaults to 255.
If set to 1, send all RTP streams on the same port pair. If zero (the default), all streams are sent on unique ports, with each stream on a port 2 numbers higher than the previous. VLC/Live555 requires this to be set to 1, to be able to receive the stream. The RTP stack in libavformat for receiving requires all streams to be sent on unique ports.
Example command lines follow.
To broadcast a stream on the local subnet, for watching in VLC:
ffmpeg -re -i input -f sap sap://224.0.0.255?same_port=1
Similarly, for watching in ffplay
:
ffmpeg -re -i input -f sap sap://224.0.0.255
And for watching in ffplay
, over IPv6:
ffmpeg -re -i input -f sap sap://[ff0e::1:2:3:4]
The syntax for a SAP url given to the demuxer is:
sap://[address][:port]
address is the multicast address to listen for announcements on, if omitted, the default 224.2.127.254 (sap.mcast.net) is used. port is the port that is listened on, 9875 if omitted.
The demuxers listens for announcements on the given address and port. Once an announcement is received, it tries to receive that particular stream.
Example command lines follow.
To play back the first stream announced on the normal SAP multicast address:
ffplay sap://
To play back the first stream announced on one the default IPv6 SAP multicast address:
ffplay sap://[ff0e::2:7ffe]
Stream Control Transmission Protocol.
The accepted URL syntax is:
sctp://host:port[?options]
The protocol accepts the following options:
If set to any value, listen for an incoming connection. Outgoing connection is done by default.
Set the maximum number of streams. By default no limit is set.
Haivision Secure Reliable Transport Protocol via libsrt.
The supported syntax for a SRT URL is:
srt://hostname:port[?options]
options contains a list of &-separated options of the form key=val.
or
options srt://hostname:port
options contains a list of ’-key val’ options.
This protocol accepts the following options.
Connection timeout; SRT cannot connect for RTT > 1500 msec (2 handshake exchanges) with the default connect timeout of 3 seconds. This option applies to the caller and rendezvous connection modes. The connect timeout is 10 times the value set for the rendezvous mode (which can be used as a workaround for this connection problem with earlier versions).
Flight Flag Size (Window Size), in bytes. FFS is actually an internal parameter and you should set it to not less than ‘recv_buffer_size’ and ‘mss’. The default value is relatively large, therefore unless you set a very large receiver buffer, you do not need to change this option. Default value is 25600.
Sender nominal input rate, in bytes per seconds. Used along with ‘oheadbw’, when ‘maxbw’ is set to relative (0), to calculate maximum sending rate when recovery packets are sent along with the main media stream: ‘inputbw’ * (100 + ‘oheadbw’) / 100 if ‘inputbw’ is not set while ‘maxbw’ is set to relative (0), the actual input rate is evaluated inside the library. Default value is 0.
IP Type of Service. Applies to sender only. Default value is 0xB8.
IP Time To Live. Applies to sender only. Default value is 64.
Timestamp-based Packet Delivery Delay. Used to absorb bursts of missed packet retransmissions. This flag sets both ‘rcvlatency’ and ‘peerlatency’ to the same value. Note that prior to version 1.3.0 this is the only flag to set the latency, however this is effectively equivalent to setting ‘peerlatency’, when side is sender and ‘rcvlatency’ when side is receiver, and the bidirectional stream sending is not supported.
Set socket listen timeout.
Maximum sending bandwidth, in bytes per seconds. -1 infinite (CSRTCC limit is 30mbps) 0 relative to input rate (see ‘inputbw’) >0 absolute limit value Default value is 0 (relative)
Connection mode. ‘caller’ opens client connection. ‘listener’ starts server to listen for incoming connections. ‘rendezvous’ use Rendez-Vous connection mode. Default value is caller.
Maximum Segment Size, in bytes. Used for buffer allocation and rate calculation using a packet counter assuming fully filled packets. The smallest MSS between the peers is used. This is 1500 by default in the overall internet. This is the maximum size of the UDP packet and can be only decreased, unless you have some unusual dedicated network settings. Default value is 1500.
If set to 1, Receiver will send ‘UMSG_LOSSREPORT‘ messages periodically until a lost packet is retransmitted or intentionally dropped. Default value is 1.
Recovery bandwidth overhead above input rate, in percents. See ‘inputbw’. Default value is 25%.
HaiCrypt Encryption/Decryption Passphrase string, length from 10 to 79 characters. The passphrase is the shared secret between the sender and the receiver. It is used to generate the Key Encrypting Key using PBKDF2 (Password-Based Key Derivation Function). It is used only if ‘pbkeylen’ is non-zero. It is used on the receiver only if the received data is encrypted. The configured passphrase cannot be recovered (write-only).
If true, both connection parties must have the same password set (including empty, that is, with no encryption). If the password doesn’t match or only one side is unencrypted, the connection is rejected. Default is true.
The number of packets to be transmitted after which the
encryption key is switched to a new key. Default is -1.
-1 means auto (0x1000000 in srt library). The range for
this option is integers in the 0 - INT_MAX
.
The interval between when a new encryption key is sent and
when switchover occurs. This value also applies to the
subsequent interval between when switchover occurs and
when the old encryption key is decommissioned. Default is -1.
-1 means auto (0x1000 in srt library). The range for
this option is integers in the 0 - INT_MAX
.
Sets the maximum declared size of a packet transferred during the single call to the sending function in Live mode. Use 0 if this value isn’t used (which is default in file mode). Default is -1 (automatic), which typically means MPEG-TS; if you are going to use SRT to send any different kind of payload, such as, for example, wrapping a live stream in very small frames, then you can use a bigger maximum frame size, though not greater than 1456 bytes.
Alias for ‘payload_size’.
The latency value (as described in ‘rcvlatency’) that is set by the sender side as a minimum value for the receiver.
Sender encryption key length, in bytes. Only can be set to 0, 16, 24 and 32. Enable sender encryption if not 0. Not required on receiver (set to 0), key size obtained from sender in HaiCrypt handshake. Default value is 0.
The time that should elapse since the moment when the packet was sent and the moment when it’s delivered to the receiver application in the receiving function. This time should be a buffer time large enough to cover the time spent for sending, unexpectedly extended RTT time, and the time needed to retransmit the lost UDP packet. The effective latency value will be the maximum of this options’ value and the value of ‘peerlatency’ set by the peer side. Before version 1.3.0 this option is only available as ‘latency’.
Set UDP receive buffer size, expressed in bytes.
Set UDP send buffer size, expressed in bytes.
Set raise error timeouts for read, write and connect operations. Note that the SRT library has internal timeouts which can be controlled separately, the value set here is only a cap on those.
Too-late Packet Drop. When enabled on receiver, it skips missing packets that have not been delivered in time and delivers the following packets to the application when their time-to-play has come. It also sends a fake ACK to the sender. When enabled on sender and enabled on the receiving peer, the sender drops the older packets that have no chance of being delivered in time. It was automatically enabled in the sender if the receiver supports it.
Set send buffer size, expressed in bytes.
Set receive buffer size, expressed in bytes.
Receive buffer must not be greater than ‘ffs’.
The value up to which the Reorder Tolerance may grow. When Reorder Tolerance is > 0, then packet loss report is delayed until that number of packets come in. Reorder Tolerance increases every time a "belated" packet has come, but it wasn’t due to retransmission (that is, when UDP packets tend to come out of order), with the difference between the latest sequence and this packet’s sequence, and not more than the value of this option. By default it’s 0, which means that this mechanism is turned off, and the loss report is always sent immediately upon experiencing a "gap" in sequences.
The minimum SRT version that is required from the peer. A connection to a peer that does not satisfy the minimum version requirement will be rejected.
The version format in hex is 0xXXYYZZ for x.y.z in human readable form.
A string limited to 512 characters that can be set on the socket prior to connecting. This stream ID will be able to be retrieved by the listener side from the socket that is returned from srt_accept and was connected by a socket with that set stream ID. SRT does not enforce any special interpretation of the contents of this string. This option doesn’t make sense in Rendezvous connection; the result might be that simply one side will override the value from the other side and it’s the matter of luck which one would win
The type of Smoother used for the transmission for that socket, which is responsible for the transmission and congestion control. The Smoother type must be exactly the same on both connecting parties, otherwise the connection is rejected.
When set, this socket uses the Message API, otherwise it uses Buffer API. Note that in live mode (see ‘transtype’) there’s only message API available. In File mode you can chose to use one of two modes:
Stream API (default, when this option is false). In this mode you may send as many data as you wish with one sending instruction, or even use dedicated functions that read directly from a file. The internal facility will take care of any speed and congestion control. When receiving, you can also receive as many data as desired, the data not extracted will be waiting for the next call. There is no boundary between data portions in the Stream mode.
Message API. In this mode your single sending instruction passes exactly one piece of data that has boundaries (a message). Contrary to Live mode, this message may span across multiple UDP packets and the only size limitation is that it shall fit as a whole in the sending buffer. The receiver shall use as large buffer as necessary to receive the message, otherwise the message will not be given up. When the message is not complete (not all packets received or there was a packet loss) it will not be given up.
Sets the transmission type for the socket, in particular, setting this option sets multiple other parameters to their default values as required for a particular transmission type.
live: Set options as for live transmission. In this mode, you should send by one sending instruction only so many data that fit in one UDP packet, and limited to the value defined first in ‘payload_size’ (1316 is default in this mode). There is no speed control in this mode, only the bandwidth control, if configured, in order to not exceed the bandwidth with the overhead transmission (retransmitted and control packets).
file: Set options as for non-live transmission. See ‘messageapi’ for further explanations
The number of seconds that the socket waits for unsent data when closing.
Default is -1. -1 means auto (off with 0 seconds in live mode, on with 180
seconds in file mode). The range for this option is integers in the
0 - INT_MAX
.
For more information see: https://github.com/Haivision/srt.
Secure Real-time Transport Protocol.
The accepted options are:
Select input and output encoding suites.
Supported values:
Set input and output encoding parameters, which are expressed by a base64-encoded representation of a binary block. The first 16 bytes of this binary block are used as master key, the following 14 bytes are used as master salt.
Virtually extract a segment of a file or another stream. The underlying stream must be seekable.
Accepted options:
Start offset of the extracted segment, in bytes.
End offset of the extracted segment, in bytes. If set to 0, extract till end of file.
Examples:
Extract a chapter from a DVD VOB file (start and end sectors obtained externally and multiplied by 2048):
subfile,,start,153391104,end,268142592,,:/media/dvd/VIDEO_TS/VTS_08_1.VOB
Play an AVI file directly from a TAR archive:
subfile,,start,183241728,end,366490624,,:archive.tar
Play a MPEG-TS file from start offset till end:
subfile,,start,32815239,end,0,,:video.ts
Writes the output to multiple protocols. The individual outputs are separated by |
tee:file://path/to/local/this.avi|file://path/to/local/that.avi
Transmission Control Protocol.
The required syntax for a TCP url is:
tcp://hostname:port[?options]
options contains a list of &-separated options of the form key=val.
The list of supported options follows.
Listen for an incoming connection. Default value is 0.
Set raise error timeout, expressed in microseconds.
This option is only relevant in read mode: if no data arrived in more than this time interval, raise error.
Set listen timeout, expressed in milliseconds.
Set receive buffer size, expressed bytes.
Set send buffer size, expressed bytes.
Set TCP_NODELAY to disable Nagle’s algorithm. Default value is 0.
Set maximum segment size for outgoing TCP packets, expressed in bytes.
The following example shows how to setup a listening TCP connection
with ffmpeg
, which is then accessed with ffplay
:
ffmpeg -i input -f format tcp://hostname:port?listen ffplay tcp://hostname:port
Transport Layer Security (TLS) / Secure Sockets Layer (SSL)
The required syntax for a TLS/SSL url is:
tls://hostname:port[?options]
The following parameters can be set via command line options
(or in code via AVOption
s):
A file containing certificate authority (CA) root certificates to treat as trusted. If the linked TLS library contains a default this might not need to be specified for verification to work, but not all libraries and setups have defaults built in. The file must be in OpenSSL PEM format.
If enabled, try to verify the peer that we are communicating with. Note, if using OpenSSL, this currently only makes sure that the peer certificate is signed by one of the root certificates in the CA database, but it does not validate that the certificate actually matches the host name we are trying to connect to. (With other backends, the host name is validated as well.)
This is disabled by default since it requires a CA database to be provided by the caller in many cases.
A file containing a certificate to use in the handshake with the peer. (When operating as server, in listen mode, this is more often required by the peer, while client certificates only are mandated in certain setups.)
A file containing the private key for the certificate.
If enabled, listen for connections on the provided port, and assume the server role in the handshake instead of the client role.
Example command lines:
To create a TLS/SSL server that serves an input stream.
ffmpeg -i input -f format tls://hostname:port?listen&cert=server.crt&key=server.key
To play back a stream from the TLS/SSL server using ffplay
:
ffplay tls://hostname:port
User Datagram Protocol.
The required syntax for an UDP URL is:
udp://hostname:port[?options]
options contains a list of &-separated options of the form key=val.
In case threading is enabled on the system, a circular buffer is used to store the incoming data, which allows one to reduce loss of data due to UDP socket buffer overruns. The fifo_size and overrun_nonfatal options are related to this buffer.
The list of supported options follows.
Set the UDP maximum socket buffer size in bytes. This is used to set either the receive or send buffer size, depending on what the socket is used for. Default is 32 KB for output, 384 KB for input. See also fifo_size.
If set to nonzero, the output will have the specified constant bitrate if the input has enough packets to sustain it.
When using bitrate this specifies the maximum number of bits in packet bursts.
Override the local UDP port to bind with.
Local IP address of a network interface used for sending packets or joining multicast groups.
Set the size in bytes of UDP packets.
Explicitly allow or disallow reusing UDP sockets.
Set the time to live value (for multicast only).
Initialize the UDP socket with connect()
. In this case, the
destination address can’t be changed with ff_udp_set_remote_url later.
If the destination address isn’t known at the start, this option can
be specified in ff_udp_set_remote_url, too.
This allows finding out the source address for the packets with getsockname,
and makes writes return with AVERROR(ECONNREFUSED) if "destination
unreachable" is received.
For receiving, this gives the benefit of only receiving packets from
the specified peer address/port.
Only receive packets sent from the specified addresses. In case of multicast, also subscribe to multicast traffic coming from these addresses only.
Ignore packets sent from the specified addresses. In case of multicast, also exclude the source addresses in the multicast subscription.
Set the UDP receiving circular buffer size, expressed as a number of packets with size of 188 bytes. If not specified defaults to 7*4096.
Survive in case of UDP receiving circular buffer overrun. Default value is 0.
Set raise error timeout, expressed in microseconds.
This option is only relevant in read mode: if no data arrived in more than this time interval, raise error.
Explicitly allow or disallow UDP broadcasting.
Note that broadcasting may not work properly on networks having a broadcast storm protection.
ffmpeg
to stream over UDP to a remote endpoint:
ffmpeg -i input -f format udp://hostname:port
ffmpeg
to stream in mpegts format over UDP using 188
sized UDP packets, using a large input buffer:
ffmpeg -i input -f mpegts udp://hostname:port?pkt_size=188&buffer_size=65535
ffmpeg
to receive over UDP from a remote endpoint:
ffmpeg -i udp://[multicast-address]:port ...
Unix local socket
The required syntax for a Unix socket URL is:
unix://filepath
The following parameters can be set via command line options
(or in code via AVOption
s):
Timeout in ms.
Create the Unix socket in listening mode.
ZeroMQ asynchronous messaging using the libzmq library.
This library supports unicast streaming to multiple clients without relying on an external server.
The required syntax for streaming or connecting to a stream is:
zmq:tcp://ip-address:port
Example: Create a localhost stream on port 5555:
ffmpeg -re -i input -f mpegts zmq:tcp://127.0.0.1:5555
Multiple clients may connect to the stream using:
ffplay zmq:tcp://127.0.0.1:5555
Streaming to multiple clients is implemented using a ZeroMQ Pub-Sub pattern. The server side binds to a port and publishes data. Clients connect to the server (via IP address/port) and subscribe to the stream. The order in which the server and client start generally does not matter.
ffmpeg must be compiled with the –enable-libzmq option to support this protocol.
Options can be set on the ffmpeg
/ffplay
command
line. The following options are supported:
Forces the maximum packet size for sending/receiving data. The default value is 131,072 bytes. On the server side, this sets the maximum size of sent packets via ZeroMQ. On the clients, it sets an internal buffer size for receiving packets. Note that pkt_size on the clients should be equal to or greater than pkt_size on the server. Otherwise the received message may be truncated causing decoding errors.
ffmpeg, ffplay, ffprobe, libavformat
The FFmpeg developers.
For details about the authorship, see the Git history of the project
(git://source.ffmpeg.org/ffmpeg), e.g. by typing the command
git log
in the FFmpeg source directory, or browsing the
online repository at http://source.ffmpeg.org.
Maintainers for the specific components are listed in the file ‘MAINTAINERS’ in the source code tree.